Curvatures of Direct Image Sheaves of Vector Bundles

نویسندگان

  • KEFENG LIU
  • XIAOKUI YANG
چکیده

Let p : X → S be a smooth Kähler fibration and E → X a Hermitian holomorphic vector bundle. As motivated by the work of Berdtsson([Bern09]), by using basic Hodge theory, we derive several general curvature formulas for the direct image p∗(KX/S ⊗E) for general Hermitian holomorphic vector bundle E in a very simple way. A straightforward application is that, if the Hermitian vector bundle E is Nakano-negative along the base S, then the direct image p∗(KX/S ⊗ E) is Nakano-negative. We also use these curvature formulas to study the moduli space of projectively flat vector bundles with positive first Chern classes and obtain that, if the Chern curvature of direct image p∗(KX ⊗ E)–of a positive projectively flat family (E, h(t))t∈D → X–vanishes, then the curvature forms of this family are connected by holomorphic automorphisms of the pair (X,E).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Logarithmic bundles and line arrangements, an approach via the standard construction

We propose an approach to study logarithmic sheaves TPn(− log DA ) associated with hyperplane arrangements A on the projective space Pn, based on projective duality, direct image functors and vector bundles methods. We focus on freeness of line arrangements having a point with high multiplicity.

متن کامل

Relative Beilinson Monad and Direct Image for Families of Coherent Sheaves

The higher direct image complex of a coherent sheaf (or finite complex of coherent sheaves) under a projective morphism is a fundamental construction that can be defined via a Cech complex or an injective resolution, both inherently infinite constructions. Using exterior algebras and relative versions of theorems of Beilinson and Bernstein-Gel’fand-Gel’fand, we give an alternate description in ...

متن کامل

Moduli for Equivariant Vector Bundles of Rank Two on Smooth Toric Surfaces

We give a complete classification of equivariant vector bundles of rank two over smooth complete toric surfaces and construct moduli spaces of such bundles. This note is a direct continuation of an earlier note where we developed a general description of equivariant sheaves on toric varieties. Here we give a first application of that description.

متن کامل

Elliptic Involutive Structures and Generalized Higgs Algebroids

ELLIPTIC INVOLUTIVE STRUCTURES AND GENERALIZED HIGGS ALGEBROIDS Eric O. Korman Jonathan Block We study the module theory of two types of Lie algebroids: elliptic involutive structures (EIS) (which are equivalent to transversely holomorphic foliations) and what we call twisted generalized Higgs algebroids (TGHA). Generalizing the wellknown results in the extremal cases of flat vector bundles and...

متن کامل

Mt822: Introduction to Algebraic Geometry

1. Algebraic varieties 2 1.1. Affine varieties 2 1.2. Projective varieties 2 1.3. Zariski topology 3 1.4. Algebraic geometry and analytic geometry 3 1.5. Singular varieties 3 1.6. Ideals 4 1.7. Regular functions and maps 5 2. Sheaves and cohomology 6 2.1. The Mittag-Leffler problem 7 2.2. Sheaves 7 2.3. Maps of sheaves 8 2.4. Stalks and germs 10 2.5. Cohomology of sheaves 11 3. Vector bundles, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013